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Abstract

The Contour Tree of a scalar field is the graph obtained
by contracting all the connected components of the level
sets of the field into points. This is a powerful abstraction
for representing the structure of the field with explicit de-

scription of the topological changes of its level sets. It has
proven effective as a data-structure for fast extraction of

isosurfaces and its application has been advocated as a user

interface component guiding interactive data exploration
sessions. We propose a new metaphor for visualizing the
Contour Tree borrowed from the classical design of a me-
chanical orrery — see Figure 1(a) — reproducing a hierarchy
of orbits of the planets around the sun or moons around a
planet. In the toporrery — see Figure 1(b) — the hierarchy
of stars, planets and moons is replaced with a hierarchy of
maxima, minima and saddles that can be interactively fil-
tered, both uniformly and adaptively, by importance with
respect to a given metric.

1 Introduction

A Morse function over a domai®, is a smooth map-
ping, f : D — R, such that all its critical points (maxima,
minima and saddles) are distinct. Complex natural phe-
nomena, both sampled and simulated, are often modeled
as Morse function's MRI scans generate Morse func-
tions that are used in medical imaging to reconstruct hu-
man tissues. Electron density distributions computed by
high-resolution molecular simulations are Morse functions
whose topology express bonds among the atoms in molec-
ular structures. The structure of geometric models used
in computer graphics and CAD applications can be effec-
tively represented in terms of the topology of a Morse func-
tion [9].

The Reeb graph [13] is a simple structure that summa-
rizes the topology of a Morse function. For functions with
simply connected domains this graph is also simply con-
nected and is called the Contour Tree. The Reeb graph has
been used to analyze the evolution of teeth contact inter-
faces in the chewing process [14], and to compute indices
of topological similarity for databases of geometric mod-
els [9]. Topological information has been used to guide

1Technically the definition of Morse function is often weakened to
allow multiple critical points or other degeneracies present in real data.

*This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.
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Figure 1. (a) Orrery reproducing the hierarchical relationship between
the orbits of the sun, the planets and their moons. Original design (1812)
by A. Janvier reprinted recently by E. Tufte [20]. (b) Toporrery represent-
ing the hierarchical relationship between the critical points in a scalar field
both at full resolution and reduced at 76% of persistence.

the construction of transfer function for volume rendering

of scientific data [17, 22]. A more extensive discussion of

the use of the Reeb graph and its variations in geometric
modeling and visualization can be found in [8].

The first algorithm for constructing Reeb graphs of Morse
functions with two-dimensional domains is due to [15].
Given a triangulated surface, this scheme takes as input the
set of all distinct level lines and therefore has worst case
time complexityO(n?), wheren is the number of vertices
in the triangulation. ArO(n logn) algorithm for comput-
ing contour trees in any dimension was introduced in [4].
This scheme has been extended in three dimensions to in-
clude the genus of all isosurfaces [12]. The first multi-
resolution representation of the Reeb graph was introduced
in [9]. Their method hierarchically samples the range space
of f while concurrently refining the Reeb graph. They ob-
tain a multi-resolution model that is suitable for fast com-
parison of graphs. However, this hierarchy does not repre-
sent the topology of at multiple levels of detail. A formal
framework for ranking topological features by persistence
has been introduced in [7] and applied to two-dimensional
Morse functions in [1]. Topological simplification is used
in [16] to design transfer function that highlight only the
major features in the data. Topological simplification is
also widely used in vector field visualization to highlight
the most important structures present in the data [19, 18].

Integration of the Contour Tree in user interfaces to
help selecting isosurfaces has been first suggested [21] but
was only fully developed six years later in [2]. The lat-
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Figure 2.(a) A polygonal armadillo model. The Morse functigris the
height in the vertical direction. The critical points are marked with small
spheres. (b) The contour tree ppresented with the critical points in their
original position. Several version of the tree with adaptive (one foot) or
uniform refinement. (c) Full resolution toporrery 6f (d) Simplification
down to 58% of persistence. Adaptive refinement with full resolution for
lower half of the body (e) or only the left foot (f).
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Figure 3. (a) A simple terrain model. The Morse functighis ver-
tical elevation. The critical points are highlighted with spheres: red for
maxima, yellow for minima and blue for saddles. (b) Toporrery ofc)
Planar layout of the same tree.

ter work is particularly interesting for the use of a new
concept of “Path Seeds” that links explicitly the arcs in
the Contour Tree to distinct connected components (con-
tours) of the level sets. This introduces the powerful new
paradigm of selecting contours instead of entire isosur-

faces. Our scheme introduces a user interface based on

a multi-resolution representation of the Contour Tree (not
just a simplification) and a metaphor for presenting the the
tree in a 3D abstract embedding similar to a mechanical or-
rery. In particular, we adapt a simple radial graph drawing
algorithm [6] and combine it with an embedding typically
used to large tree hierarchies [10].

Our results are summarized in Figures 1 and 2 with pre-
sentations of the topology of two scalar fields defined on
3D domains (electron density distribution of water at high
pressure) and 2D domains (armadillo).

2 Multi-resolution Contour Trees

Contour Tree of a Morse Function. Let D be a trian-
gulated domain ang : D — R be a function obtained by
linear interpolation of the value of at the vertices oD.
Morse theory provides a formal framework for understand-
ing the topology ofD by analyzing the functiorf. The
fundamental tool in Morse theory is the characterization of
each point ofD as being either regular or critical.

We assume thaD is a simplicial complex. Therefore,

everyk-cell c of D is the convex hull of + 1 vertices of
D. Moreover, a cell’ is a calledfaceof c if its vertices are
a subset of those af If ¢ € D then all its faces must be in
D. Foravertex € D, itslink Lk, is the set of cells that do
not containu but that are faces of some cell containing
Furthermore, théower link of v, Lk, is the set of all cells
in Lk, that have only vertices with function value smaller
thanf(v). Theupper link Lk;" is the set of cells ik, that
have only vertices with function value greater thm).
Definition 1 LetD be a triangulated manifold with bound-
ary andf : D — R be a piecewise-linear function. A ver-
texv € D is called regularif both Lk, and Lk;" have
exactly one connected component. Otherwigecalled a
critical pointand f(v) is called acritical value

We can now define a Morse function. Since the definition
only refers to critical points it applies equally well in the
smooth and discrete settings.

Definition 2 f is aMorse functionff all its critical values
are distinct.

On piecewise-linear functions this condition can be en-
forced by symbolically perturbing the critical values. If the
verticesv;, v; € D are critical points such that(v;) =
f(v;), then we definef(v;) < f(v;) if and only if i < j.

In practice we apply the symbolic perturbations to the func-
tion value at all the vertices € D. This allows us to sort
the vertices by their function value and to simply define
f(v;) = 1.

Definition 3 A level setof f is the pre-image of a real
valuew, L¢(w) = f~!(w). Given a level setl;(w), we
call a connected component bf (w) a contout

Morse theory describes how the the topologyZgf(w)
changes as the field valug, changes. One of the main
results states that if andb are such that the rande, b]
contains no critical values, theh,(w) is homeomorphic
to Ly(v) for all w,v € [a,b]. On the other hand if the
range|a, b] contains a single critical valuey,, then for
w € [a,wy) andv € (wq,b] the difference in the topol-
ogy of Ly(w) and L¢(v) can be completely described as
follows: (i) If wy is a local minimum, a new contour is cre-
atedinL ;(v) that did not existirL s (w). (i) If wy is alocal
maximum, a contour of ;(w) is destroyed. (i) Ifw, is a
saddle point, either two contours bf (w) merge into a sin-
gle contour ofL ¢(v) or one contour of. ¢ (w) divides into
two contours ofL ;(v). For volumetric or higher dimen-
sional domains, a saddle point can also induce a topological
change in a single contour @f; (no split nor merge).

The Contour Tree encodes the changes in the number of
contours of the level set.

Definition 4 Consider the graph obtained by contracting
each contour of every level set pto a point. For general
Morse functions this graph is called tiReeb graphand

can have any number of cycles, depending on the topology
of D [5]. However, if D is simply connected tHeeeb graph

is also simply connected and is call€bntour Tree

From the definition it can be seen that the nodes of the
contour tree correspond critical points pfand are there-
fore associated with the relative critical value. Further-
more, nodes that correspond to extrema are leaf nodes, and



nodes that correspond to saddle points must have degree
three (or higher in degenerate cases). Figure 3(a) shows a
simple terrain as an example of Morse function, where the
elevation of each point is the value §f Figure 3(b) show
the corresponding Contour tree. Figure 3(c) shows the pla-
nar layout proposed in [21] where thyecoordinate of each
node is constrained to be equal to to the corresponding crit-
ical value off. Note that with this constraint the graph can-
not be drawn in the plane without self-intersections.
Hierarchical Graph Representation We define a multi-
resolution representation of the contour tree that allows lin-
ear time access to simplified representations of the topol-
ogy. Typically finite graphs are represented as a list of
nodes and a list of arcs, where each arc is defined as a
node pair. In this section we discuss an alternative rep-
resentation called a branch decompositionbrAnchis a
monotone path in the graph traversing a sequence of nodes
with non-decreasing (or non-increasing) valuefof The
first and last nodes in the sequence are called the endpoints
of the branch. All other nodes are said to be interior to the
branch. Note that a branch can be thought of equally as a
sequence of nodes or a sequence of arcs. A set of branches
is called abranch decompositionf a graph if every arc
the graph appears in exactly one branch of the set. The
standard representation of a graph satisfies this definition,
where every branch is a single arc. We call this the trivial
branch decomposition.

Definition 5 A branch decomposition of a tree ihéerar-

chical tredf: (i) there is exactly one branch connecting two
leaves (called root branch), (ii) every other branch con-
nects one leaf to a node that is interior to another branch.

We wish to construct a branch decomposition represent-
ing the contour tree of a scalar fiefd: D — R, such that
the endpoints of each branch (except the root) represent an
extremum paired with a saddle point of the scalar field. See
Figure 4. The tree can be simplified by removing a branch
that does not disconnect the tree. This corresponds to the
cancellation of two critical points in the scalar filed. This
simplification process defines a hierarchy of cancellations
where a branciB1 is said to be the parent of branét8 if
one endpoint o33 is interior to B1. The root branch has
no parent and cannot be simplified. Removal of a parent
before one of its children disconnects the tree. In the next
section we will discuss the construction of a branch decom-
position based on the persistence of critical point pairs.

Once the decomposition is constructed and the parent-
child relations are defined, we can build any approxima-
tion of the original tree by incrementally connecting child
branches to their parent. In particular, we associate values
to each branch for several metrics (such as persistence, ge-
ometric location or other) and artificially enforce a nesting
condition that requires, for all the metrics, the value of the
parent to be greater than or equal to the value of its chil-
dren. Given a tolerance threshold for several metrics at the
same time, we start from the root branch and iteratively se-
lect children with metrics above the required thresholds.

Tree Layout and Presentation.

We define an embedding of the contour tree, which can
be used as a user interface tool. The vertical coordinate-
axis is fixed to represent the value of the scalar field. In
doing so we loose one degree of freedom, which makes it
impossible, in general, to build a planar embedding without
self-intersections. Figure 3 is an example of a simple scalar
field with a contour tree that cannot be embedded in the
plane without self-intersections. Thus, in this section, we
describe a three-dimensional embedding of the contour tree
that uses the-coordinate to represent the field value, and
such that the projection onto the plane= 0 has no self-
intersections. We also provide a progressive construction
of this embedding using the multi-resolution representation
given above.

Our visualization scheme makes use of an algorithm for
the layout of rooted trees [6]. Any such algorithm could
be used to produce an embedding. We chose a radial lay-
out algorithm that positions the root node of the tree at the
origin and positions its descendants in concentric circles.

The main idea of the layout algorithm is to define a se-
guence of consecutive disk®; € Dy, C D3 C ---, with
radiir; < ro < r3 < ---. Then we compute an angu-
lar wedge at each node such that the subtree rooted at that
node is contain entirely within the angular wedge. The root
node is positioned at the origin and the nodes of déatre
arranged on the boundary of the diBk. We require the
ratio of consecutive radii to be a constant= “;“ > 1.

This guarantees the branches will be spread out nicely. If
instead we fixed the difference between consecutive radii,
then the ratlo”‘% — 1 ask — oo, and the maximal size

of the angular wedges goestoThus the subtrees of nodes
far away from the origin will appear to be arranged along a
straight line.

Figure 5 demonstrates the algorithm for computing the
angular wedge of a nod&’, which is on the boundary
of the disk D;. Let 5 be the angular wedge that has
been computed foV. First, we can guarantee no self-
intersections by ensuring that all arcs drawn fréfmto
one of its children lie to the right of the tangent to the
disk Dy, at N. Otherwise, an arc could cross into the in-
terior of the diskDy, and may intersect an edge of the tree
that has already been drawn. To ensure this is not the case
we must restric < 2cos™! (1) = 2cos™'(}). Inthe

figure we show the limiting case whefe = 2003*1(%).

In our implementation we use = /2, thus we restrict

8 < 2cos*1(%) = 5. However, one can see that it is
only necessary to enforce this condition for the nodes on
the boundary of the disk, since we have choseﬁf?‘%1 to

be constant. '

In figure 5 the children of the nod® are the nodegv,,
N>, and N3. To compute the angular wedggswe parti-
tion the angles proportionally to the sizes of the subtrees
rooted at each node. If we let be the number of leaves of
the subtree rooted &f; andn the number of leaves of the
subtree rooted av, then we have the following relations:
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Figure 4. Contour Tree decomposed into Figure 5. Shows the arrangement Figure 6. A pictorial representation of the scaling factors

branches. The root brandpy connects two ex- used to compute the angular wedges
B2, and g3 for the nodesV1, N, and

trema. By pairs a minimum with a saddl&32

and B3 can be canceled independently. N3 that are children ofV.

n =mny+ ns + ns
B =01+ B2+ B3
nying:ng=pF1: 5203
Therefore, we have that; = "3 < 3. Sinceg < 3
thens; < 5 and we can guarantee that the subtree rooted
at NV; is free of self-intersections.

To compute the embedding of a hierarchical tree we use
the parent-child relationship between branches to construct
a rooted tree whose nodes are the branches of the hierar-
chical tree. Applying the layout algorithm above to this
tree produces a planar embedding, which we use for the
(z,y)-coordinates of nodes in the hierarchical tree. For
each branch we assign th€sey)-coordinates to all its in-
terior nodes and its unpaired endpoint(s). As stated above
thez-coordinate of each node is assigned the function value
of the corresponding critical point in the scalar field. The
branches are then visualized as “L’ shapes, where the base
of the “L” connects the branch to its parent along a hori-
zontal line at the height of the paired endpoint.

3 Hierarchical Morse Functions

In this section we develop the tools used to compute a hi-
erarchical representation of the Contour Tree for a given
Morse function. While we do not simplify the input Morse
function we establish criteria to determine in which cases
the simplified Contour Tree corresponds to a Morse func-
tion that can be constructed from the input data by cancel-
lations of critical points.

In summary our algorithm isobustin the sense that for
any input field it constructs a valid branch decomposition
of the Contour Tree. In fact, it produces a valid branch
decomposition even if the input data has a Reeb graph with
loops.

Unfortunately, the simplification is guaranteed, in gen-
eral, to produce simplifications that have a topological
equivalent only if all the saddles in the data merge or split
contours. In 3D, for example, there may be pairs of critical

used to construct’. (a) show how the range of the vertices in
the regionDs — D, are scaled. (b) shows how the range of the
vertices in the regiot. are scaled.

points that only change the genus of the contours and that
may need to be canceled in pairs. To resolve this, we plan
to extend our representation to allow nodes of degree two
asin[12]

For simplicity of presentation we assume in the following
that the domairD is a simply connected, compact surface.

Simplification. We develop a multi-resolution frame-
work for distinguishing fine resolution topological features
from persistent, coarse resolution structures. There are two
operations that can be performed on a Morse functfgn,
that are known to construct a new Morse functigh,can-
cellations and handle slides. A cancellation transforms
a Morse function into a topologically “simpler” function.
Handle slides are more subtle transformations the details
of which are not relevant here.

Letm € D be an extremum and € D be a saddle point
of the Morse functiory, such that there is a gradient curve
connecting them. We consider the problem of defining a
new Morse functiory’ such thatn andv are regular points
of f/ and all other critical points of are critical points of
f’. When such arf’ can be found we say that the pair of
critical points(m, v) can be canceled.

A method for computing a sequence of paired critical
points, called persistence pairing, was described in [7].
It is based on the definition of the persistent homology
groups. The persistence of a paim,v), is defined to
be|f(v) — f(m)|. One thinks of the lower valued criti-
cal point as creating a topological feature and the greater
valued one as destroying it. A hierarchy is constructed
on these features by sorting them according to their persis-
tence. This hierarchy defines an ideal sequence of simpli-
fications. However, it is known that the critical point pairs
cannot, in general, be canceled in this order. The authors
introduce the notion of topological obstructions to explain
why a cancellation in the sequence cannot be performed.

The algorithm we present constructs a similar hierarchy,
but one that defines an order of pairs such that the next pair
can always be canceled. Conceptually, we produce a se-
guence that guarantees for any given pair of critical points



all obstructions are canceled before canceling that pair. In
this section, we prove that it is possible to construct such
a sequence for any Morse function oer whereD is a
simply connected, closed surface.

Consider a saddle point € D with f(v) = w. LetC
be the contour of the level sét;(w) that containg. C'is
the union of two simple closed curves, callgetals which
intersect aty and do not intersect at any other pointZin
A petal ofv partitionsD into disjoint regions. The region
that contains no other petals ofis said to be enclosed by

the petal,
Leana 1 Let f: D — R be a Morse function, iff has

more than two critical points then it must have at least one

saddle point. .
Proof:  SinceD is compact,f must have one global

maximum and one global minimum. If there is another
critical point, it is either a saddle (which proves the theo-
rem) or another extremum. In the latter case the Contour
Tree of f has at least three leaf nodes. Since the Contour
Tree is connected there must be a node with degree three,
which corresponds to a saddle pointfof O

Lemma?2 Let f : D — R be a Morse function, iff has
more than two critical points then there exists a saddle
point, v € D with a petal that encloses exactly one crit-

ical point of f. )
Proof: By lemma 1, f must have a saddle point.

Choose a petal ofy and the region enclosed by /.
We assume, without loss of generality, that the descending
gradient curves starting from to the boundaryf point
toward its interior. Thus, there must be a local minimum,
my, in the interior of M. Let f, be the restriction off
to Dy. By a symbolic perturbation of the function values
on boundary oD, we can makey, a maximum off, and
make all the other points on the boundaryZf regular
points. Ifmy is the only critical point in the interior aDg
the theorem is proved. So assume that therengre- 1
critical points of f in the interior of Dy. This implies that
fo hasny + 1 > 2 critical points, so there must be a saddle
pointv, € Dy. But vy is the only critical point offy on
the boundary o>y sov; must be in the interior dDy and
therefore it is a saddle point of the entire functifin

Now apply the above construction tg and recursively
create a sequence of saddle poingsvy,... € D. Thus
the corresponding sequence of regiofs, enclosed
by the petals of they;, satisfy the inclusion relations
Dy D Dy D ---. Finally, this implies that the numbers
n; of critical points of f in the interiors ofD; form a
decreasing sequencey > n; > ---. Since there are
only a finite number of critical points and > 0 for all 4,
there must be some numbesuch thaty, = 1. Therefore
v = vy, IS the required saddle point. |

Lemma 3 Let f : D — R be a Morse functiony be a sad-
dle point as in lemma 2, ang be the unique critical point
enclosed by a petal af. Then there exists a functigff
that cancels the paifm,v). Moreover, the size of the re-
gion where the sign of the gradient ¢f differs from that
of f can be made arbitrarily small.

Figure 7. A saddle pointv and a minimumm connected by steepest
descending patla (arrows). Ane-neighborhood of: (red) is the only
region where the direction of the gradient is changed. The area inside the
curveL ¢ (w+26) is the only region where the function value is modified.

Proof: First, we distinguish between the topological con-
dition on f’ and the geometric one. The topological condi-
tion states thaf’ cancels the paifm, v). The proof of this
fact is a well known theorem of Morse theory and can be
found in section 3.4 of [11].

On the other hand the geometric condition states that we
can make the region where we must change the sign of gra-
dient flow as small as we like. This condition is slightly
stronger than what is typically found in the Morse theory
literature. We will demonstrate this is possible by using a
triangulation ofD. Consider the region dP shown in Fig-
ure 7, such a region exists by lemma 2. Without loss of
generality we assume that is a local minimum. Let be
the steepest descending edge path fodown. If f(v) = w
then we subdivide the mesh along the portion of the curve
Ly(w + 20) shown in Figure 7, fos small enough. We
also subdivide the mesh along the cutVg which is de-
fined such that the arcs with endpointsifp andc¢ each
have length less than

The endpoints of the portion df ;(w + 2§) drawn in the
figure can be connected by following the steepest decent
paths that flow inta to form a simple closed curve. Call
the region bounded by this curv®,. Similarly, we can
define a simple closed curve by connecting the endpoints
of N.. The region enclosed by this curve will be called
D. C Ds. We now explicitly constructf’ by redefining
the function values of all the vertices in the regibp and
definef’'(z) = f(x) for all z ¢ Ds. Figure 6 shows how
the ranges of the vertices iR; — D, and D, are scaled.
These transformations are reported here:

6(f(x) = f(m))

)= @20 fom) "Wt wE€Ds D
5 =w) , .
f(m)—w .

The equation forx € Ds — D, corresponds to Fig-
ure 6(a), which scales the rangg(m),w + 24] to the
range [w + d,w + 24§]. On the other hand the range
of the verticesz € D., which is [f(m),w], is inverted
and scaled tdw,w + ¢], see Figure 6(b). It is easy to



see that using these equations the sign of the gradient
is only changed for points in the regidh.. Since we

can makeD, as small as we like, the theorem is proved.
Furthermore, the construction demonstrates that the only
region where the function value has to be modifietjs

4 Multi-Resolution Contour Trees

We present an algorithm for computing a representation
of the contour tree that allows linear time access to sim-
plified trees, either by uniform or adaptive simplification.
Algorithms for computing the contour tree can be found
in [4] and [12]. In both cases the algorithms first make
two passes through the data to compute a join tree and a
split tree. The degree three nodes of the join tree repre-
sent the saddle points where contours are merged, and the
those of the split tree represent saddle points where con-
tours are divided. These trees are then merged to construct
the contour tree. We use the same approach to construct a
hierarchical representation, however, we must store all our
trees as branch decompositions and modify the algorithm
that merges the join and split trees.

In addition to the basic hierarchical data structure dis-
cussed in the previous sections we take into consideration
the function value of the vertices associated with each node.
Thus we can sort the nodes in a branch by increasing func-
tion value. We call the first node the starting node of the
branch and the last node the ending node. The length of a
branch is defined to be the absolute value of the difference
in function value of the endpoints. This value is returned by
the functionLengti{ B). Leaf nodes can now be classified
as either minima or maxima, by checking if the node is a
starting node or ending node respectively. Furthermore, we
can now characterize saddle points as either join saddles or
split saddles. An interior node is a join saddle if it is the
ending point of some branch, whereas it is a split saddle if
it is the starting point of some branch. In this characteriza-
tion a join saddle corresponds to a saddle poinf afhere
two contours merge, and a split saddle to a saddle where
one contour divides.

This data structure allows us to make certain queries that
we can use to determine if a branch can be simplified. Our
algorithm checks the criteria for simplification in a proce-
dure calledCanSimplifyG, B), which returns true if the
branchB in the graphG represents a valid cancellation.
The first criterion for this to be true is that the branch must
have no children. If a branch has any children then we say
that the child branch is obstructing the parent branch. This
condition is necessary but not sufficient for determining if
a branch is able to be simplified.

Given a pair of critical points that can be canceled we
always think of the first point as creating a topological fea-
ture that the second as one destroying it. For example, a
minimum creates a new contour. Thus a minimum must
be paired with a saddle that destroys that contour, which
occurs at a join saddle. Similarly we can see that a maxi-

mum must be paired with a split saddle. So the other cri-
terion that must be checked BanSimplify( G, B) is that
the endpoints o3 are either a minimum and a join saddle
or a split saddle and a maximum.

Once atree is constructed we can perform several queries
on it. First, we include the functio®etTred B) that re-
turns the tree that contains the branBh For an arbi-
trary branch decomposition it is possible to have degree 2
nodes. We can check if a nodd], has degree two with
the functionlsRegulafT’, N). If a node is a starting point
we can perform the quetypBranciT, N), which returns
the branch that starts at the node. Likewise, we can call
DownBranci{T, N') on ending points to access the branch
that ends at the node. GanSimplify(B) returns true for
a branchB, then exactly one of it endpoints represents a
saddle point. In this case we can access the unique sad-
dle point of the branch by callinGetSaddléB). Finally,

a branch is defined to be a leaf branch if it has no interior
nodes and one of its endpoints is a leaf node. The function
IsLeafBrancliT, E) returns true ifE is a leaf branch.

4.1 Join and Split Trees.

Any of the standard algorithms for computing the join and
split trees can be implemented, but the resulting trees must
be stored as trivial branch decompositions. In these algo-
rithms every node in each tree represents a critical point.
Thus there will be some degree two nodes in each tree,
which correspond to saddle points from the other tree.

For completeness we briefly describe the algorithm for
constructing the join and split trees that given in [4]. How-
ever, this algorithm has been improved upon in [12]. First,
the vertices ofD are sorted by function value. The idea
is then to keep track of a Union-Find data structure as one
sweeps through the vertices in increasing and decreasing
order. During the increasing sweep we build the join tree
and during the decreasing sweep we build the split tree.
We present an algorithm for computing the join tree and
describe the differences in the split tree algorithm.

In the pseudo-code given below we make use of
a simple Union-Find data structure that includes the
functions NewUKF), NewSetUF,i), Find(UF,i), and
Union(UF,i,j). These functions respectively create the
data structure, add a new class, return the class containing
a given index, and merge two classes. Finally, we require
the boolean functionisMin(v) andlsCriticalv) that return
true if v is a local minimum off and a critical point off
respectively ¢ is the only argument sincg(v) is implicitly
determined by its order in a sorted array.)

Algorithm 1. JoinTree
Input: Sorted array of vertices {v; }) and a triangulated surfac®}.
Output: Join treeT).

. JT = NewGraplt)

. UF = NewUK)

. fori=0ton — 1do:

if 1sCritical(v; ) then AddNod€ J T, i)

if IsMin(v;) then NewSe{UF, 1)
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6. i = Find(UF,q)

7. for each edgev;v; with j < 7 do:

8. §' = Find(UF, 5)

9. if 5/ # 4/ then AddBranc{JT, j/,1')
10. Union(UF, ', §)

11. return JT

The algorithm for constructing the split tre8", is al-
most identical, the only differences are: on line 3 the
statement goes from— 1 to 0, on line 8 the testsMin(v;)
is replace by the tedsMax(v;), and on line 9 the edges
with j > ¢ are considered. When th&T" is constructed
in this manner the start of each branch has greater function
value than the end. So it is also necessary to reverse the
direction of all the branches in th&T" in order to make all
the saddle points i7" split saddles. This can be done in
a subroutine and either included in the algorithm or as a
post-processing step before constructing the contour tree.

4.2 Computing the Multi-Resolution C'T..

In previous contour tree algorithms the Contour TIE&,,

is constructed form théT and ST by “peeling off” leaves

of the JT and ST and adding them to th€T. This ap-
proach uses a queue to store the leaves during processing,
which can be removed in any order. Our algorithm uses the
same approach, however, we must impose a strong condi-
tion on the order in which the leaves are “peeled off.” We
enforce this condition by using a priority queue such that
we always remove the next shortest leaf branch that rep-
resents a valid simplification. Once a branch is removed
from the queue the adjacent branches inilieandST are
merged, which is why'T' and.S’T" must be stored as branch
decompositions. These merges can change the length of
branches that are already in the queue. Thus one of the ma-
jor difficulties in the algorithm is maintaining a valid prior-

ity queue. We do this on the fly by simply checking if the
top branch of the queue is valid. The condition that must
be checked is complex enough to warrant a subroutine, so
we present the routineopValid(PQ).

There are two possibilities for why the branch at the top of
the priority queue is not valid. First of all, the current length
of the branch might not be the same as its length when it
was entered into the queue. It is possible that the branch
was merged with another one, so it could be longer, thus it
might have a lower priority than some other branch in the
gueue. Inthis case we simply return the branch to the queue
with its new priority. Additionally, it might be the case that
the for the top branchB, CanSimplify(B) returns false.
This can come about by removal and merging of branches
as well. In this case the branch has become invalidated in
a more essential way and we simply remove it from the
gueue altogether.

The priority queue is a standard data-structure that uses
the operationsPop(PQ) andPush( PQ, B), that retrieve
the top element of the queue, and push a branch onto the
gueue respectively. It also supports the teEmpty PQ)
that returns true if there are no elements in the queue. In our

case the priority is the length of a brandh, andPop(B)

is guaranteed to return the branch with the lowest priority.
The priority of a branchB, when it was entered into the
queue can be queried using the functiRniority (B).

Algorithm 2. PopValid
Input: Priority Queue PQ) of branches
Output: Branch B) that is a valid simplification
1. B =Pop(PQ)
2. isValid = false
3. while notisValid do:

4.  if not CanSimplify( B) then:
5. B = Pop(PQ)
6. else:
7. if Length( B) # Priority (B) then:
8. Push PQ, B)
9. B = Pop(PQ)
10. else:
11. isValid = true
12. return B

The proceduréPopValid(PQ) ensures that we can pull
the first branch that represents a valid cancellation from the
gueue. In this way we can ensure that each branch repre-
sents a topological simplification gf It was proved in the
previous section that we can always find a simplification,
thus PopValid(PQ) will always return a value as long as
the priority is not empty.

For readability we introduce another subroutine of the
contour tree algorithm that does the work of “peeling off”
a leaf branch. In this routine we make use of the function
MergeBranche#t,,B,) that merges the branché® and
B, into the single brancii; .

Algorithm 3. PeelOffBranch
Input: Branch B), Join Tree {T') and Split Tree §7)
Output: A branch representing a valid simplificationari!.
1. XT = WhichTre€B)
2. N = GetSaddléB)
3. RemoveBranchX T, B)
4. if IsRegulafJT, N) then:
5 B; = DownBrancl{JT, N)
6 By = UpBranch{JT, N)
7 MergeBranchesB, B2)
8. if XT == ST andCanSimplify(B1) then:
9. return B
10. if IsRegula¢ST, N) then:
By = UpBranc{ ST, N)
By = DownBrancl{ST, N)
13.  MergeBranchd$31, B2)
if XT == JT and CanSimplify(B;) then:
15. return By
16. return null

Using the  subroutines PopValid(PQ) and
PeelOffBranchiB, JT,ST) the code for our main al-
gorithm,BuildContourTre¢JT, ST), is relatively simple.

Algorithm 4. BuildContourTree
Input: Join Tree {T) and Split Tree §7)
Output: Contour Tree({T)
. CT = NewGraph
. PQ = NewPQ
. foreachB € JT do:
if IsLeafBrancfiB) and CanSimplify( B) then:
Push(PQ, B)
. foreachB € ST do:
if IsLeafBrancfiB) and CanSimplify(B) then:
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(a) (b)
Figure 8.(a) Two geometric models of a dinosaur (top row) and a horse
(bottom row). (b) The contour trees of each model, where the function is
the displacement along the vertical axis. (c) Simplified trees with persis-
tence value 0.02. (d) Adaptively simplified trees showing detail around
the head.

() (d)

8. Push PQ, B)
9. while notIsEmpty PQ) do:

10.  Biop = PopValid(PQ)

11.  AddBrancCT, Biop)

12, Bpeqt = PeelOffBranct{Biop, JT, ST)
13.  ifnot Bpeat # null thenPush PQ, Brext)

14. return CT

Itis clear from the discussion in this and the previous sec-
tion that this algorithm produces a multi-resolution contour
tree, such that each branch represents a valid topological
simplification. We can now define an order on the branches
that allows one to extract a contour tree after any number
of simplifications in linear time. First, we define the per-
sistence of a branch to be the greater of its length and the
persistence of each of it children. This definition differs
from the definition of persistence given in [7] because it
takes into consideration the topological obstructions. Thus
a pair of critical points is never assigned a persistence value
that is less than any of its obstructions.

The same analysis as in [3] can be used to show that the
complexity of BuildContourTree i€ (nlogn) wheren is
the number of nodes idT and.ST. Using a simple FIFO
gueue instead of a priority queue would yield a complexity
of O(n) but with the risk of building an unbalanced tree.
In practice this does not seem to be a problem and a linear
gueue may be advisable for a faster implementation with
lighter data-structures.

The branch decomposition representation of €& al-
lows for uniform or adaptive refinement of the tree. Uni-
form simplification is achieved by interrupting the drawing
process when the first branch with persistence less than a
specified value is reached. Adaptive simplification is al-
most as easy, before each branch is visualized it is tested to
see if it satisfies the adaptive criterion (see Figure 8).
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